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We consider a partially ionized hydrogen gas at low densities, where it reduces almost to an ideal mixture
made with hydrogen atoms in their ground-state, ionized protons and ionized electrons. By performing sys-
tematic low-temperature expansions within the physical picture, in which the system is described as a quantum
electron-proton plasma interacting via the Coulomb potential, exact formulae for the first five leading correc-
tions to the ideal Saha equation of state have been derived [A. Alastuey, V. Ballenegger et al., J. Stat. Phys.
130, 1119 (2008)]. Those corrections account for all effects of interactions and thermal excitations up to order
exp(EH/kT ) included, where EH � −13.6 eV is the ground state energy of the hydrogen atom. Among the
five leading corrections, three are easy to evaluate, while the remaining ones involve suitably truncated internal
partition functions of H2 molecules and H− and H+

2 ions, for which no analytical formulae are available in
closed form. We estimate those partitions functions at finite temperature via a simple phenomenology based
on known values of rotational and vibrational energies. This allows us to compute numerically the leading
deviations to the Saha pressure along several isotherms and isochores. Our values are compared with those of
the OPAL tables (for pure hydrogen) calculated within the ACTEX method.

c© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction

Obtaining asymptotically exact formulae for the equation of state of quantum Coulomb matter is important, both
at a theoretical level and for practical applications. They provide a better understanding of basic phenomena like
molecular recombination and screening in the framework of statistical mechanics. Such formulae are free from
any a priori phenomenological modelization and uncontrolled approximation. They provide moreover reliable
and accurate data in some range of thermodynamical parameters. Exact expansions are of particular interest
for hydrogen described as a gas of quantum protons and electrons interacting via the Coulomb potential, since
hydrogen is the most abundant element in the universe. A very accurate knowledge of its thermodynamics is
needed for example for helioseismology [1–3]. At low densities, exact expansions have been obtained in two
different limits, as described below.

First, in the limit where common proton and electron number density ρp = ρe = ρ is driven to zero while
temperature T = 1/(kBβ) is fixed at a non-zero value, hydrogen becomes fully ionized because of entropy
dissociation, as proved in Ref. [4]. Then, pressure P can be expanded according to the virial expansion [5–8],

βP = 2ρ− κ3

24π
+ c1(T )ρ

2 + c2(T )ρ
5/2 +O(ρ3 ln ρ) . (1)

In that expansion, κ = (8πβe2ρ)1/2 is the familiar Debye wavenumber, while temperature-dependent coefficients
c1(T ) and c2(T ) can be expressed in terms of Ebeling’s functions Q(x) and E(x) of a dimensionless parameter
x [5]. The leading term describes a classical ideal gas of electrons and protons. The next terms account for
corrections due to quantum and interaction effects.
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Although the second virial coefficient contains contribution of hydrogen atoms, virial expansion (1) is no
longer appropriate in the so-called Saha regime, where a finite fraction of electrons and protons recombine into
atoms. The second limit of interest precisely defines that Saha regime in a proper mathematical way. According
to Saha theory [9], hydrogen is expected to behave as a partially ionized atomic gas at both sufficiently low
temperatures and low densities, and its pressure should reduce to Saha formula

βPSaha = ρ+ ρ∗(
√
1 + 2ρ/ρ∗ − 1) (2)

with

ρ∗ =
exp(βEH)

2(2πλ2)3/2
, (3)

EH = −me4/(2�2) the atom groundstate energy, m the reduced electron-proton mass and λ = (β�2/m)1/2.
Temperature-dependent density ρ∗ controls the cross-over between full ionization when ρ � ρ∗ (βPSaha ∼ 2ρ)
and full recombination when ρ � ρ∗ (βPSaha ∼ ρ). That phenomenological prediction has been proved to be
true [10] within the scaled double limit ρ → 0 and T → 0 while ratio ρ/ρ∗ is kept fixed, namely pressure P tends
to Saha formula (2) discarding exponentially smaller corrections. The corresponding scaled low temperature
(SLT) expansion of P reads [11]

βP/ρ∗ = βPSaha/ρ
∗ +

∞∑
k=1

bk(ρ/ρ
∗)αk(β) . (4)

Each correction to the leading term βPSaha/ρ
∗ reduces to a function bk(ρ/ρ

∗) of ratio ρ/ρ∗ only, times a
temperature-dependent function αk(β) which decays exponentially fast when T vanishes, αk(β) ∼ exp(−βδk)
except for possible multiplicative powers of β. Expansion (4) is ordered with respect to the decaying rates
0 < δ1 < δ2 < ... of the αk(β)’s functions. The explicit analytical formulae for the first five corrections obtained
in Ref. [11], are recalled in Section 2, as well as their physical content. As enlighted by its dependence in density
ρ, each term in SLT expansion (4) is a suitable resummation of an infinite number of terms in virial expansion
(1). Such resummations are crucial in order to account non-perturbatively for atomic recombination. Notice that
virial coefficients cn(T ) diverge in general when T → 0, like c1(T ) which explodes because of the contribution
exp(−βEH) of the atomic groundstate, so virial expansion (1) indeed breaks down in the scaled double limit
defining the Saha regime, most terms in the series becoming ill-defined products of the form infinity times zero.
Such divergences as T → 0 also occur in ordinary fugacity expansions in any system where bound states with
negative energy exist.

As argued in Refs. [11,12], the SLT expansion (4) provides a useful analytical knowledge of thermodynamics
in an extended domain of the phase diagram. That domain is restricted to sufficiently low temperatures, typically
kBT � |EH |, and includes of course the fully ionized region ρ � ρ∗ where SLT expansion (4) does reduces to
virial expansion (1). Also it includes the atomic region where ρ is of order ρ∗, and it breaks down at too large
densities ρ � ρ∗ because molecular recombination then prevails over atomic recombination. The purpose of
the present paper is to give a flavor about reliable numerical data which can be extracted from the truncation of
SLT expansion (4) up to order k = 5 included. Coefficients bk are simple algebraic functions of the reduced
density ρ/ρ∗. If functions α1(β), α3(β) and α5(β) are explicitly known in closed elementary forms, no similar
expressions are available for α2(β) and α4(β), because analytical results on the three- and four-body quantum
problem are very scarce. In Section 3, we propose simple modelizations of those functions which account for
their exact low-temperature forms one the one hand, and incorporate familiar phenomenological descriptions of
ions H− and H+

2 and of molecule H2 on the other hand. Within those modelizations, we proceed in Section
4 to numerical calculations of the various SLT corrections to Saha EOS (2) along a given isotherm, and we
compare our results with those of the OPAL tables [13] calculated within the ACTEX method [14] along a given
isochore. More extensive calculations, as well as comparisons with either chemical approaches [15] or Path
Integral Quantum Monte Carlo simulations [16], will be detailed in a forthcoming paper [17].
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2 Exact corrections to Saha pressure

2.1 Physical content

The first five terms in SLT expansion (4) account for non-ideal phenomena such as plasma polarization, shift in
the atomic energy levels, interactions between ionized charges and atoms, and also formation of molecules H2 or
ions H− and H+

2 , as summarized in the following table (with obvious notations for groundstate energies of the
considered recombined entities).

Correction (k) Physical content δk (in eV)
1 plasma polarization around ionized charges |EH |/2 � 6.8
2 formation of molecules, atom-atom interactions |3EH − EH2 | � 9.1
3 atomic excitations, charge-charge interactions 3|EH |/4 � 10.2
4 formation of ions, atom-charge interactions |2EH − EH+

2
| � 11.0

5 fluctuations of plasma polarization |EH | � 13.6

Further corrections k ≥ 6 decay exponentially faster than exp(βEH). The contributions of ion H− are included
in the fourth correction, but have decay rate |2EH − EH− | � 12.9. The decay rate of the fourth correction is
hence determined by the binding energy of ion H+

2 which is more stable than ion H−. Notice that contributions
of recombined entities, like atoms H in k = 3 or molecules H2 in k = 2, are entangled with that of their
dissociation products. Moreover, the first correction k = 1 to Saha pressure is identical to that which can be
inferred from a modified Saha ionization equation derived within Green function methods [18]. All the other
corrections k ≥ 2 are entirely new, as well as the mathematical structure itself of SLT expansion (4).

2.2 Explicit expressions

Coefficients bk in SLT expansion (4) are simple algebraic functions of ratio ρ/ρ∗. The first five coefficients are

b1(ρ/ρ
∗) =

γ
3/2
S (γS − 2)

3(γS + 1)
(5)

b2(ρ/ρ
∗) = −γ4

S (γS + 3)

2(γS + 1)
(6)

b3(ρ/ρ
∗) = − γ2

S

γS + 1
(7)

b4(ρ/ρ
∗) = −γ3

S (γS + 4)

3(γS + 1)
(8)

b5(ρ/ρ
∗) =

γ2
S (γS + 1− ρ/ρ∗)

(γS + 1)
(9)

where γS(ρ/ρ
∗) =

√
1 + 2ρ/ρ∗ − 1. For k = 1, 2, 3, 4, the αk’s functions in expansion (4) are identical to the

hk’s functions defined in Ref. [11], while α5(β) = [h1(β)]
2. Function h1(β) is given by the simple formula

h1(β) =
(β|EH |)3/4

π1/4
exp(βEH/2), (10)

while

h2(β) =

(
1

64
(
2m

M
)3/2Z(2, 2) +W (1, 1|1, 1)

)
exp(3βEH), (11)

h3(β) =

(
1

2
S2(1, 0) +

1

2
S2(0, 1) +W (1, 0|1, 0) +W (1, 0|0, 1)− (cp + ce)(β|EH |)3/2

24π3/2

+
1

8

[
Zexc(1, 1) + (

2m

mp
)3/2Z(2, 0) + (

2m

me
)3/2Z(0, 2)

])
exp(βEH) (12)

c© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.cpp-journal.org



Contrib. Plasma Phys. 50, No. 1 (2010) / www.cpp-journal.org 49

and

h4(β) =
3

64

(
(
me(M +mp)

M2
)3/2Z(2, 1) + (

mp(M +me)

M2
)3/2Z(1, 2)] + S3(1, 1)

+
3

2
[W (1, 1|1, 0) +W (1, 1|0, 1)]

)
exp(2βEH). (13)

In expressions (11)-(13), mp and me are respectively the proton and the electron masses, and M = mp + me.
Moreover partition functions

Z(Np, Ne) =
(2πλ2

Np,Ne
)3/2

Λ
Tr[exp(−βHNp,Ne)]

T (14)

are truncated traces of the Gibbs operator associated with the Hamiltonian HNp,Ne of a cluster of Np protons and
Ne electrons inside a box with volume Λ, for which the thermodynamic limit Λ → ∞ is implicitly taken. Also
λNp,Ne = (β�2/(Npmp + Neme))

1/2 is the thermal de Broglie wavelength of that cluster. Previous truncated
traces converge thanks to a truncation inherited from screening effects. Functions S and W describe screening
and interaction contributions for the specified clusters.

Functions α1(β) and α5(β) reduce to elementary functions of β. Also, two-body partition functions Z(Np, Ne)

with Np+Ne = 2 can be rewritten [11] in terms of Ebeling functions Q(x) and E(x) with x ∝ √
β|EH |, which

are represented by entire series in x [6]. This provides a closed analytical expression for α3(β) at finite tem-
perature. Similar expressions for α2(β) and α4(β) are available only at very low temperatures [11], because of
our poor knowledge of the spectra of three- and four-body Hamiltonians HNp,Ne . Thus, in order to proceed to
numerical applications at finite T , we first derive simple modelizations of α2(β) = h2(β) and α4(β) = h4(β) as
described in the next section.

3 Phenomenological modelizations of some ingredients

3.1 Function h2(β)

Partition function Z(2, 2) defined by (14) involves internal molecular contributions on the one hand, and inter-
action contributions between entities resulting from molecular dissociation on the other hand. According to the
numerical values of EH , EH+

2
, and EH− , we can retain only contributions of the molecule and of atom-atom

interactions. Indeed, all other contributions decay exponentially faster than exp(βEH), so they can be dropped
for consistency reasons. For the molecular contribution, we use the familiar modelization [19],

ZH2 = exp(−βEH2)[ ∞∑
l=0

(4l + 1) exp(−2l(2l + 1)βε
(rot)
H2

) + 3
∞∑
l=0

(4l + 3) exp(−(2l + 1)(2l + 2)βε
(rot)
H2

)

]
[

1

1− exp(−βε
(vib)
H2

)

]
,

(15)

where ε
(rot)
H2

and ε
(vib)
H2

are the energy quanta associated with global rotation and proton vibration respectively,

ε
(rot)
H2

/kB � 87.5K and ε
(vib)
H2

/kB � 6.34 × 103K. In the rotational partition function, the first sum runs
over rotational states of para-hydrogen, while the second sum corresponds to states of ortho-hydrogen. For the
contribution of atom-atom interactions, we set

WH−H =
m3/2

8(2πβ�2)3/2
[−4π

3
σ3
H−H +

∫
R>σH−H

dR(exp(−βUH−H(R))− 1)] , (16)
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as if the atoms were classical hard spheres with diameter σH−H and interacting via the usual attractive van der
Waals potential UH−H(R) = −AH−H/R6. In the following, we set σH−H = 3.08 aB where aB = �

2/(me2) is
the Bohr radius, an oftenly used value for σH−H [6]. Above modelizations of molecular and atomic contributions
lead to the simple phenomenological representation

h
(phen)
2 (β) =

√
2m3/2

32M3/2
ZH2 exp(3βEH) +WH−H exp(βEH) . (17)

We stress that modelization (17) does display the exact low-temperature behaviour of h2(β), so it should pro-
vide rather accurate values for h2(β) up to a few thousand Kelvins, where molecular contributions dominate. At
very low temperatures, atomic contributions are not well described by WH−H because of quantum effects, but this
does not affect significantly the accuracy of h(phen)

2 (β). In the range 10000K < T < 30000K, atomic contribu-
tions become of the same order as molecular contributions. Moreover, large-distance contributions of UH−H(R)
to WH−H exp(βEH) do coincide with the long-range part of the interaction-energy W (1, 1|1, 1) exp(3βEH) in
the exact formula (11). Eventually, contributions of electronic excitations to the internal molecular part ZH2 can
be omitted when T ≤ 30000K, because the corresponding energy gaps are of order 10 eV at least. Therefore,
modelization (17) should reasonably work up to T = 30000K.

3.2 Function h4(β)

Similarly to the above construction of h(phen)
2 (β), we introduce

h
(phen)
4 (β) =

3m
3/2
e (M +mp)

3/2

64M3
ZH+

2
exp(2βEH) +

3m
3/2
p (M +me)

3/2

64M3
ZH− exp(2βEH)

+
cat

8π3/2(β|EH |)1/2 exp(2βEH) +WH−p exp(βEH) +WH−e exp(βEH). (18)

In such modelization, internal partition functions for ions H+
2 and H− are defined as

ZH+
2
= 2 exp(−βEH+

2
)[ ∞∑

l=0

(4l + 1) exp(−2l(2l + 1)βε
(rot)

H+
2

) + 3
∞∑
l=0

(4l + 3) exp(−(2l + 1)(2l + 2)βε
(rot)

H+
2

)

]
⎡
⎣ 1

1− exp(−βε
(vib)

H+
2

)

⎤
⎦ ,

(19)

and

ZH− = 2 exp(−βEH−), (20)

with ε
(rot)

H+
2

/kB � 43.1K and ε
(vib)

H+
2

/kB � 3.34× 103K, and where electronic excitations are omitted. Contribu-

tion of S3(1, 1) exp(2βEH) has been replaced by its low-temperature form with constant cat given in Ref. [11].
Contributions of interactions between an atom and an ionized charge are expressed as respectively

WH−p =
3m3/2

4(2πβ�2)3/2
[−4π

3
σ3
H−p +

∫
R>σH−p

dR(exp(−βUH−p(R))− 1)] (21)

and

WH−e =
3m3/2

4(2πβ�2)3/2
[−4π

3
σ3
H−e +

∫
R>σH−e

dR(exp(−βUH−e(R))− 1)] , (22)
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where we set σH−p = 2.54 aB and σH−e = 1.54 aB . Furthermore, UH−p(R) = −AH−p/R
4 and UH−e(R) =

−AH−e/R
4 are the usual potentials generated by quantum fluctuations of dipole-charge interactions.

Similarly to modelization (17), phenomenological expression (18) reproduces the exact leading behaviour of
h4(β) at low temperatures, while large-distance contributions of UH−p(R) and UH−e(R) to WH−p and WH−e

respectively, reduce to their counterparts in exact formula (13). That expression cannot be expected to be very
accurate up to T = 30000K, because of various drawbacks, like the occurence of quantum effects for the
ionized electron. Nonetheless, the corresponding accuracy is sufficient for our purpose, because contributions to
thermodynamics associated with h4(β) remain quite small in the Saha regime.

4 Numerical results

4.1 Low-temperature isotherm

In Fig. 1, we plot deviation δP = P − PSaha computed by retaining the first five correction terms in SLT
expansion (4), along isotherm T = 6000K for which ρ∗ � 2.16 × 1015 m−3, as a function of reduced density
ρ/ρ∗. When ρ/ρ∗ ≤ 105, the dominant contribution is due to the polarization of the plasma around ionized
charges, embedded in correction k = 1. For ρ/ρ∗ ≤ 10−2, that contribution is negative and reduces to the Debye
expression −κ3/(24π), in agreement with virial expansion (1). At ρ/ρ∗ = 4, correction k = 1 changes sign,
as seen on expression (5) for coefficient b1(ρ/ρ∗). The plasma-polarization correction is thus not given at high
densities by Debye formula with a modified Debye length computed with the density of ionized charges, as it
could naively be expected.
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Fig. 1 Logarithmic plot of deviations to Saha pressure for pure hydrogen along isotherm T = 6000 K (ρ∗ = 2.2×1015 m−3).

At densities ρ/ρ∗ ≥ 105, molecular contributions embedded in term k = 2 become the most important
correction, as expected at high densities. Since the formation of molecules reduces the pressure, δP then becomes
again negative. When ρ/ρ∗ ≥ 1011, the SLT expansion fails to converge because molecular recombination cannot
be treated perturbatively anymore. Notice that corrections k = 3, 4, 5 give negligible contributions along the
present isotherm. This is no longer the case at higher temperatures, where term k = 3, which involves atomic
excitations and atom-atom interactions, overcomes the other corrections in some density range, as exemplified
along the isochore shown in the next section.

Eventually, let us illustrate above considerations through an astrophysical example of wide interest. In the
Sun photosphere, the temperature is indeed about 6000 K. If we assume a massic density of order 10−7 g/cc and
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relative concentrations in mass of 72% Hydrogen, 26% Helium and 2% for heavier elements, we find ρ/ρ∗ � 107

[20]. Under such conditions, electrons and protons are almost fully recombined into hydrogen atoms, and the
deviations to Saha pressure are primarily due to the formation of H2 molecules.

4.2 Low-density isochore and comparison to OPAL equation of state

Now we consider an isochore along a fixed density ρ corresponding to a massic density equal to 10−7 g/cc. In
Fig. 2, we compare deviations to ideal Saha pressure obtained by keeping the first five terms in SLT expansion
(4), with the tabulated values of the OPAL equation of state [13]. Because of the presence of exponential factors,
the results are very sensitive to the used value for the atomic groundstate energy, in particular when determining
δPOPAL = POPAL − PSaha. After checking OPAL data in some specific limits where all corrections to ideal
Saha pressure can be safely neglected, we conclude that we have to compute δPOPAL with ideal Saha pressure
(2) determined with the Rydberg energy ERyd � −13.6057 eV instead of the true value EH = −me4/(2�2) �
−13.598286 eV. Indeed, that difference caused by the reduced mass can induce corrections of more than one
order of magnitude in δP in regions where ρ ∼ ρ∗.
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Fig. 2 Pressure along isochore 10−7 g/cc: (a)
ideal Saha pressure [eq. (2)]; (b) Logarithmic plot
of deviations to ideal Saha pressure, calculated us-
ing the SLT expansion of pressure truncated after
term k = 5 (solid line) and k = 2 (dashed line).
Crosses correspond to the tabulated OPAL equation
of state [13].

At low temperatures T < 8000 K, the dominant correction along the isochore is due to molecular recombina-
tion embedded in term k = 2. Our data agree relatively well with the OPAL values. At very low temperatures,
T < 3000 K, expansion (4) cannot be used at the considered density, because molecular recombination becomes
then too important.

When T > 8000 K, the OPAL values are clearly very well reproduced, by the sole correction k = 1. For T >
11000 K, contributions of charge-charge interactions and of atomic excitations embedded in correction k = 3,
overcome term k = 1. More extensive calculations and further comparisons will be detailed in a forthcoming
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publication [17]. Also, we will present results for other thermodynamical quantities (in particular the internal
energy) which can be obtained using standard thermodynamical relations.
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[2] W. Däppen, The equation of state for the solar interior, J. Phys. A: Math. Gen. 39: 4441 (2006).
[3] A. N. Starostin and V. Roerich, Bound states in nonideal plasmas: formulation of the partition function and application

to the solar interior, Plasma Sources Sci. Technol. 15, 410-415 (2006).
[4] J. Lebowitz and R. Pena, Low density form of the free energy of real matter, J. Chem. Phys. 59, 1362-1364 (1973).
[5] W. Ebeling, Ann. Phys. Leipz. 19, 104 (1967).
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